Skip to content

2748. Number of Beautiful Pairs

Easy

You are given a 0-indexed integer array nums. A pair of indices i, j where 0 <= i < j < nums.length is called beautiful if the first digit of nums[i] and the last digit of nums[j] are coprime.

Return the total number of beautiful pairs in nums.

Two integers x and y are coprime if there is no integer greater than 1 that divides both of them. In other words, x and y are coprime if gcd(x, y) == 1, where gcd(x, y) is the greatest common divisor of x and y.

Example 1:

Input: nums = [2,5,1,4]
Output: 5
Explanation: There are 5 beautiful pairs in nums:
When i = 0 and j = 1: the first digit of nums[0] is 2, and the last digit of nums[1] is 5. We can confirm that 2 and 5 are coprime, since gcd(2,5) == 1.
When i = 0 and j = 2: the first digit of nums[0] is 2, and the last digit of nums[2] is 1. Indeed, gcd(2,1) == 1.
When i = 1 and j = 2: the first digit of nums[1] is 5, and the last digit of nums[2] is 1. Indeed, gcd(5,1) == 1.
When i = 1 and j = 3: the first digit of nums[1] is 5, and the last digit of nums[3] is 4. Indeed, gcd(5,4) == 1.
When i = 2 and j = 3: the first digit of nums[2] is 1, and the last digit of nums[3] is 4. Indeed, gcd(1,4) == 1.
Thus, we return 5.

Example 2:

Input: nums = [11,21,12]
Output: 2
Explanation: There are 2 beautiful pairs:
When i = 0 and j = 1: the first digit of nums[0] is 1, and the last digit of nums[1] is 1. Indeed, gcd(1,1) == 1.
When i = 0 and j = 2: the first digit of nums[0] is 1, and the last digit of nums[2] is 2. Indeed, gcd(1,2) == 1.
Thus, we return 2.

Constraints:

  • 2 <= nums.length <= 100
  • 1 <= nums[i] <= 9999
  • nums[i] % 10 != 0

Solution

class Solution:
    def countBeautifulPairs(self, nums: List[int]) -> int:
        res = 0
        for i in range(len(nums)):
            for j in range(i + 1, len(nums)):
                if math.gcd(int(str(nums[i])[0]), nums[j] % 10) == 1:
                    res += 1

        return res